Friday, August 20, 2010

USDA: Animal Disease Traceability August 2010

USDA: Animal Disease Traceability August 2010


as a consumer, my opinion (if that matters), you need some sort of traceability for your livestock. I don't want to know anything about your family, your income, your kids, your sex life, nothing but to be able to trace that animal from farm to fork. I want to know whether or not if that animal has been fed animal protein, antibiotics, and if myself or my family do get sick, we should be able to trace that product. I don't see the problem. you can trace every part on your car, I can find out anything I want about you on the internet. why can't I do that with a cow?

let's review a few things about the NAIS, why we need it past and present. let's review first the few mad cows that were accidently found, birth cohorts, herd cohorts etc., and how efficient or NOT the traceability of those 4 animals were....oops, that's right, the first stumbling and staggering mad cow in Texas was sent straight to the render, did not pass GO(inspection), did not get $200.(prion rapid test), and of course, was never confirmed. THEN the second mad cow, the one that would never have been confirmed if not for an act of Congress and the Honorable Fong of the OIG, and scientist from the EU and the USA asking questions, meanwhile the BSE MRR was being finalized. Then after 7 months of sitting on the shelf, after a secret test had already turned up positive, but yet still 7 months no confirmation on a BSE positive test that by the BSE Red Books, it should have been a 48 hour turnaround on that test. Finally, the 2nd Texas mad cow was confirmed positive BSE. later termed atypical h-BSE. Then you had the Alabama mad cow, now termed g-h-BSEalabama, and then of course the mad cow old Luther capped in Washington state, the white one, that changed colors, and then was said to be a Canadian traitor c-BSE mad cow. IT's all Canada's fault ;-(NOT)

Be sure to see the latest data on the typical and atypical cases of BSE and Scrapie and any human CJD TSE there from. This is down toward the bottom of the posting.


Let's look at how the USDA et al trace BSE aka mad cow cases, birth, and index herd cattle in the past (or rather how they could not trace them).

TEXAS MAD COW (h-BSE), that was finally tested and documented 7+ months after an act of Congress, and Scientist from all over the Globe questioning the testing methods and negative findings of this Texas mad cow. ...


Birth Cohort The owner of Farm A kept very few herd records; this made finding documentation on this cow’s birth cohort difficult. The birth cohort, by definition, included all cattle born on the positive animal’s birth premises within 1 year, before or after, the positive animal’s date of birth. The index cow was approximately 12 years of age in November 2004, but there was no exact birth date in the herd records. A potential age range of 11 to 13 years was used to sufficiently cover the animal’s most likely age. Using this range, all cattle born on the index premises between 1990 and 1995 were considered part of the birth cohort. In lieu of the owner’s records, herd records from Veterinary Services’ Generic Database (GDB) were used to compile a list of brucellosis calfhood vaccination (CV) tag numbers from the index herd that corresponded to animals to be included in the birth cohort. There were 121 animals identified through GDB as having been calfhood vaccinated on the index farm between 1991 and 1994. The owner of Farm A did not calfhood vaccinate after 1994. Moreover, calfhood vaccinates include only heifers. Therefore, the list of 121 animals was not a complete list of all birth cohorts. However the tracing that response personnel conducted on other COI was designed to account for the remainder of the birth cohorts.

Feed Cohort ...


Tracing of Progeny

The 2003/2004 progeny of the index cow was known to have left the farm through a specific livestock market sometime between February and October 2004. The 2002/2003 progeny of the index cow left the farm through the same market sometime between January


and December 2003. Response personnel learned early in the investigation that animals from the index farm were sold not only under the index farm owner’s name and that of his wife, but also by other members of the owner’s immediate family. Additionally, there were no herd records to indicate the gender of the two at-risk progeny. Therefore, market records for February through October 2004 and January through December 2003 were obtained for all calves sold both by Farm A’s owner and by members of his immediate family; response personnel traced all such calves to determine their disposition. With the index herd being composed of mixed breed beef cattle, the calves that left the farm were genetically unsuitable for use as replacement animals or for sale as breeding stock, a fact that was confirmed by the trace work and the documentation of the final disposition of the calves of interest.

Response personnel ultimately identified 213 calves of interest to be traced. Of these, 208 were confirmed to have entered known rendering/slaughter channels, 4 were presumed to have entered rendering/slaughter channels, and 1 was purchased in cash through a livestock market with no buyer name or contact information (this animal was classified as untraceable. See Appendix 1). A calf was categorized as presumed to have entered rendering/slaughter channels if it passed through at least one livestock market subsequent to its original sale and could not be individually traced due to unknown resale date and new backtag, but all calves resold matching that description during an appropriate date range were purchased by known rendering/slaughter order buyers.

It was not possible to DNA test the calves that entered known rendering and slaughter channels – most were of an age in which they were likely to have been slaughtered prior to the time of the investigation. There were no calves traced to farms outside of rendering and slaughter channels.

Tracing of Birth Cohorts

Since there were essentially no records maintained on the index farm, it was necessary to compile the list of known birth cohorts using brucellosis CV tag numbers for this herd from the period 1991 to 1994. The calves vaccinated during that time period were part of the index cow’s birth cohort and tracing activities centered on finding those animals. There were 121 animals whose CV tag number and/or tattoo included them as part of the birth cohort. Of those 121 animals, 67 animals were definitively accounted for (42 were found in the index herd, removed, and tested BSE negative; 25 were identified as having left Farm A through the market system and were traced, 11 of those were reported slaughtered, 13 were classified as presumed dead, and 1 was found alive, euthanized, and tested BSE negative). Of the remaining 54 animals from the birth cohort, there may have been several that died within the index herd, but the majority likely left the herd without identification and would have been either re-tagged at the livestock market or consigned directly to slaughter without identification. To account for these remaining birth cohorts, all adult cattle that left the index farm since 1990 were traced as COI.


Tracing of Cattle of Interest

The investigation revealed that many animals left Farm A, arrived at markets without any identification tags, and were subsequently re-tagged at the market. Due to lack of farm records, it is unknown which of these re-tagged animals may have belonged to the birth cohort. As a result, all animals that may have left Farm A since 1990 were traced as COI. Additionally, animals from the index farm were sold not only under the index farm owner’s name and that of his wife, but also by other members of the owner’s immediate family; therefore, cattle sold from the index farm by all pertinent family members were traced. There were some older animals that left the index farm but were able to be excluded from further trace work because they were known not to have been part of the birth cohort or feed cohort of the index cow despite their being of the appropriate age. The index farm owner’s late father had maintained a herd of cattle separate from the index farm but which was added to the index farm in 1997. Complete herd test data and CV data from the GDB was obtained for the father’s herd and those animals were excluded from the tracing activities.

There were a total of 200 COI traced: 143 were reported to have been slaughtered (131 of those were confirmed as having been slaughtered), 1 is known to have died previously and was buried, 2 were found alive (1 was a known birth cohort that tested negative, 1 was determined not to be one of the cattle of interest due to her young age), 34 were classified as presumed dead, 20 were classified as untraceable. (See Appendix 1). Animals were confirmed at slaughter using GDB slaughter testing data or the hard copies of slaughter testing Form 4-54.

An animal was classified as presumed dead if records that could be used to advance the tracing of the animal were exhausted or did not exist, and the age of the animal at the time of the investigation was estimated to be at least 11 years old or older. Since the index herd was not a purebred or seedstock operation, and animals leaving the herd were unlikely to be purchased as replacement cattle, standard industry practices indicated that most adult animals that had left the herd would have been culled and slaughtered by the time they were in this age group. Additionally, this age cutoff was arrived at through review of market records and the specific years in which Farm A sold cattle through the market. An animal was classified as untraceable if all records to advance the tracing of the animal were exhausted or did not exist, and the age of the animal at the time of the investigation was estimated to be less than 11 years of age (the animal, therefore, could not be presumed dead).


Trace Herd 1

The owner of Trace Herd 1 was identified as having received one of the adult COI from the index herd. Trace Herd 1 contained 909 head of cattle in multiple pastures and was placed under hold order on 7/21/05. Upon completion of herd inventory, the animal of interest was not found within the herd. A GDB search of all recorded herd tests conducted on Trace Herd 1 and all market sales by the owner failed to locate the identification tag of the animal of interest and she was subsequently classified as untraceable. The hold order on Trace Herd 1 was released on 8/8/05.

Trace Herd 2

Trace Herd 2 was identified as having received one of the adult COI from the index herd. Trace Herd 2 contained 19 head of cattle on one pasture and was placed under hold order on 7/25/05. The owner of Trace Herd 2 identified the animal of interest by her eartag while he was feeding his cattle out of a bucket and individually penned her for inspection by field personnel. While the cow was identified as one of the animals that had left the index farm, her age by dentition was estimated to be only 5 years old, which was too young to have placed her as part of the birth or feed cohort of the index animal. She was classified as found alive but determined not to be one of the COI; the hold order on Trace Herd 2 was released on 7/26/05.


Trace Herd 3

The owner of Trace Herd 3 was identified as possibly having received an animal of interest. The herd was placed under hold order on 7/27/05. The herd inventory was conducted on 7/28/05. The animal of interest was not present within the herd, and the hold order was released on 7/28/05. The person who thought he sold the animal to the owner of Trace Herd 3 had no records and could not remember who else he might have sold the cow to. Additionally, a search of GDB for all cattle sold through the markets by that individual did not result in a match to the animal of interest. The animal of interest traced to this herd was classified as untraceable because all leads were exhausted.

Trace Herd 4

The owner of Trace Herd 4 was identified as having received one of the COI through an order buyer. Trace Herd 4 was placed under hold order on 7/29/05. A complete herd inventory was conducted on 8/22/05 and 8/23/05. There were 233 head of cattle that were examined individually by both State and Federal personnel for all man-made identification and brands. The animal of interest was not present within the herd. Several animals were reported to have died in the herd sometime after they arrived on the premises in April 2005. A final search of GDB records yielded no further results on the eartag of interest at either subsequent market sale or slaughter. With all leads having been exhausted, this animal of interest has been classified as untraceable. The hold order on Trace Herd 4 was released on 8/23/05.

Trace Herd 5

The owner of Trace Herd 5 was identified as having received two COI and was placed under hold order on 8/1/05. Trace Herd 5 is made up of 67 head of cattle in multiple pastures. During the course of the herd inventory, the owner located records that indicated that one of the COI, a known birth cohort, had been sold to Trace Herd 8 where she was subsequently found alive. Upon completion of the herd inventory, the other animal of interest was not found within the herd. A GDB search of all recorded herd tests conducted on Trace Herd 5 and all market sales by the owner failed to locate the identification tag of the animal of interest and she was subsequently classified as untraceable due to all leads having been exhausted. The hold order on Trace Herd 5 was released on 8/8/05.

Trace Herd 6

The owner of Trace Herd 6 was identified as possibly having received an animal of interest and was placed under hold order on 8/1/05. This herd is made up of 58 head of cattle on two pastures. A herd inventory was conducted and the animal of interest was not present within the herd. The owner of Trace Herd 6 had very limited records and was unable to provide further information on where the cow might have gone after he purchased her from the livestock market. A search of GDB for all cattle sold through the markets by that individual did not result in a match to the animal of interest. Additionally, many of the animals presented for sale by the owner of the herd had been re-tagged at the market effectually losing the traceability of the history of that animal prior to re-tagging. The animal of interest traced to this herd was classified as untraceable due to all leads having been exhausted. The hold order on Trace Herd 6 was released on 8/3/05.


Trace Herd 7

The owner of Trace Herd 7 was identified as having received an animal of interest and was placed under hold order on 8/1/05. Trace Herd 7 contains 487 head of cattle on multiple pastures in multiple parts of the State, including a unit kept on an island. The island location is a particularly rough place to keep cattle and the owner claimed to have lost 22 head on the island in 2004 due to liver flukes. Upon completion of the herd inventory, the animal of interest was not found present within Trace Herd 7. A GDB search of all recorded herd tests conducted on Trace Herd 7 and all market sales by the owner failed to locate the identification tag of the animal of interest. The cow was subsequently classified as untraceable. It is quite possible though that she may have died within the herd, especially if she belonged to the island unit. The hold order on Trace Herd 7 was released on 8/8/05.

Trace Herd 8

Trace Herd 8 received an animal of interest, which happened to be a known birth cohort of the index cow, from Trace Herd 5. Trace Herd 8 consists of 146 head of cattle that were placed under hold order on 8/4/05. A herd inventory was conducted, the birth cohort was found alive in the herd, and she was purchased and euthanized. The hold order on Trace Herd 8 was released on 8/4/05. The cow was sampled on 8/5/05 and BSE tested by ELISA at NVSL. Results were negative (as reported on 8/6/05); carcass disposal was completed by alkaline digestion.

Analysis of Data on Presumed Dead and Untraceable Animals

CEAH performed an analysis of the minimum estimated ages of those COI that were classified as either presumed dead or untraceable to determine the likely disposition of those animals based on their ages. Moreover, CEAH performed an analysis of the likely disposition of the one calf that was classified as untraceable during the investigation.

OF course, the birth and herd cohorts of this highly suspect, stumbling and staggering mad cow in Texas, will never be known ;

FOR IMMEDIATE RELEASE Statement May 4, 2004 Media Inquiries: 301-827-6242 Consumer Inquiries: 888-INFO-FDA

Statement on Texas Cow With Central Nervous System Symptoms

On Friday, April 30 th , the Food and Drug Administration learned that a cow with central nervous system symptoms had been killed and shipped to a processor for rendering into animal protein for use in animal feed.

FDA, which is responsible for the safety of animal feed, immediately began an investigation. On Friday and throughout the weekend, FDA investigators inspected the slaughterhouse, the rendering facility, the farm where the animal came from, and the processor that initially received the cow from the slaughterhouse.

FDA's investigation showed that the animal in question had already been rendered into "meat and bone meal" (a type of protein animal feed). Over the weekend FDA was able to track down all the implicated material. That material is being held by the firm, which is cooperating fully with FDA.

Cattle with central nervous system symptoms are of particular interest because cattle with bovine spongiform encephalopathy or BSE, also known as "mad cow disease," can exhibit such symptoms. In this case, there is no way now to test for BSE. But even if the cow had BSE, FDA's animal feed rule would prohibit the feeding of its rendered protein to other ruminant animals (e.g., cows, goats, sheep, bison).

FDA is sending a letter to the firm summarizing its findings and informing the firm that FDA will not object to use of this material in swine feed only. If it is not used in swine feed, this material will be destroyed. Pigs have been shown not to be susceptible to BSE. If the firm agrees to use the material for swine feed only, FDA will track the material all the way through the supply chain from the processor to the farm to ensure that the feed is properly monitored and used only as feed for pigs.

To protect the U.S. against BSE, FDA works to keep certain mammalian protein out of animal feed for cattle and other ruminant animals. FDA established its animal feed rule in 1997 after the BSE epidemic in the U.K. showed that the disease spreads by feeding infected ruminant protein to cattle.

Under the current regulation, the material from this Texas cow is not allowed in feed for cattle or other ruminant animals. FDA's action specifying that the material go only into swine feed means also that it will not be fed to poultry.

FDA is committed to protecting the U.S. from BSE and collaborates closely with the U.S. Department of Agriculture on all BSE issues. The animal feed rule provides crucial protection against the spread of BSE, but it is only one of several such firewalls. FDA will soon be improving the animal feed rule, to make this strong system even stronger.



BSE Update From Alabama

News Date March 27, 2006

Alabama Agriculture Commissioner Ron Sparks and Alabama State Veterinarian Dr. Tony Frazier with the Alabama Department of Agriculture and Industries (ADAI) and USDA have provided an update on their ongoing joint investigation of the cow that died from bovine spongiform encephalopathy (BSE) in Alabama.

Since the investigation began, the ADAI and the USDA have followed multiple leads in the traceback process. At this time, 13 locations and 32 movements of cattle have been examined with 27 of those being substantially completed. Additional investigations of locations and herds will continue. In addition, state and federal officials have confirmed that a black bull calf was born in 2005 to the index animal (the red cow). The calf was taken by the owner to a local stockyard in July 2005 where the calf died. The calf was disposed of in a local landfill and did not enter the human or animal food chain.

Without a premises or animal ID program in place, the traceback process to find the herd of origin of the index cow is time-consuming and difficult. It includes conducting interviews, reviewing of records and documents, and testing of cattle DNA. State and federal officials have discovered several herds of interest and they are planning to use DNA testing to determine DNA linkage between the index cow and the herds. Through the DNA testing of these herds, investigators will attempt to find a genetic path that could lead to the herd of origin. Sparks stressed that the DNA testing being conducted on the herds is for genetic markers and is not a test for the disease BSE.

As part of the thorough investigative process, a large number of cattle may be tested in this phase and the number of herds included will continue to grow as the traceback progresses. Leads will be followed by state and federal officials until they are exhausted. Even when an index animal is traced to its birth herd, often cohorts of that animal are no longer in that herd. In addition, even if an animal's cohort has been exposed to the same infective material in feed, the other animals will not necessarily contract BSE.

BSE is not a contagious disease that spreads animal to animal, or animal to human. BSE spreads in cattle through the consumption of feed containing specified risk material (brain and spinal cord) derived from BSE infected cattle. The United States banned the use of such protein supplements in cattle feed since 1997. Sparks says that beef consumption in this country is safe and there are measures in place to see that it continues to be safe. For example, downer animals are not allowed to enter commerce for human consumption and there is a ban on feeding ruminant derived protein to cattle. (Contact: Bob Ehart)

News Contact: Bob Ehart; 202-296-9680

WELL, we know that the FDA mad cow feed ban of August 4, 1997 was nothing but ink on paper. there is still animal protein in commerce in the USA being fed out to cattle and other livestock as we speak. see a few warning letters and or recalls here ;

WE also know that the USDA certified dead stock downer cow school lunch program NSLP, fed these most high risk cattle for BSE and mad cow disease and other deadly pathogens to our children all across our Nation for over 4 YEARS, you can see this here ;

AND there is evidence of cohort BSE documented (see at bottom) ;

Alabama BSE Investigation Final Epidemiology Report May 2, 2006

ALSO, that Washington Mad Cow case ;

Appendix II

Federal Actions Associated with the Discovery of an Animal in the United States Infected with BSE

Page 40 GAO-05-51 Food Recall Programs

On December 26, 2003, USDA began checking the primary and secondary customers of the recalling company that it was aware of, although the entire product distribution chain was unknown. During the checks, USDA tried to determine if the product was further distributed, and it used verification checks to acquire distribution lists for secondary and tertiary customers of the recalling company.

Verification checks continued until February 25, 2004. Three USDA districts conducted these verification checks. The Boulder District coordinated the checks and assigned checks to the Minneapolis District Office for customers in Montana and to the Alameda District Office for customers in California. USDA required that 100 percent of the primary checks, 50 percent of the secondary checks, and 20 percent of the tertiary checks be conducted on-site. According to USDA, more than 50 percent of the secondary checks were actually conducted on-site. FDA officials helped conduct verification checks. According to USDA, the recall took a long time to complete because USDA contacted each customer at least twice. USDA first contacted each customer to conduct the check and again to verify product disposition.

On February 25, 2004, the Boulder District concluded that the recall was conducted in an effective manner. On March 1, 2004, USDA s Recall Management Division recommended that the agency terminate the recall, and USDA sent a letter to the recalling company to document that USDA considered the recall to be complete.

Recall Was Complicated by Inaccurate Distribution Lists and Mixing of Potentially Contaminated and Noncontaminated Beef USDA used distribution lists and shipping records to piece together where the recalled product was distributed. According to USDA, one of the recalling company s three primary customers was slow in providing its customer list. USDA could not begin verification activities for that primary customer without this list. Furthermore, some customers of the recalling company provided USDA with imprecise lists that did not specify which customers received the recalled product. As a consequence, USDA could not quickly determine the scope of product distribution and had to take time conducting extra research using shipping invoices to determine which specific customers received the product.

Even when USDA determined the amount and location of beef, the agency still had trouble tracking the beef in certain types of establishments, such as grocery store distributors. USDA could not easily track the individual stores where those distributors sent the beef because of product mixing Appendix II Federal Actions Associated with the Discovery of an Animal in the United States Infected with BSE Page 41 GAO-05-51 Food Recall Programs and the distributors record-keeping practices. Generally, distributors purchase beef from multiple sources, mix it in their inventory, and lose track of the source of the beef they send to the stores that they supply. ...


QFC sued over mad cow case

Grocer negligently exposed them to beef, family claims

Friday, March 5, 2004


QFC s Delayed Mad Cow Response Draws Lawsuit

Family claims QFC should have used customer database to warn those at risk sooner

March 05, 2004





QUALITY FOOD CENTERS, INC., an Ohio corporation Defendent

NO. 04-2-05608-0 SEA


The Court hereby GRANTS the defendant's motion to dismiss the plaintiff's claims based on a manufacturer's strict liability (Counts I and II) and DENIES the defendant's motion to dismiss the plaintiff's claim of negligence by a product seller (Count III).

DATED this 14th day of June, 2004


* GAO-05-51 October 2004 FOOD SAFETY (over 500 customers receiving potentially BSE contaminated beef) - TSS 10/20/04

October 2004

FOOD SAFETY USDA and FDA Need to Better Ensure Prompt and Complete Recalls of Potentially Unsafe Food


Do Stores That Offer Loyalty Cards Have a Duty to Notify Customers of Product Safety Recalls? A Recent Suit Raises This Novel Question By ANITA RAMASASTRY Thursday, Aug. 05, 2004 An interesting new Washington state court suit raises an important question: If a retailer benefits from collecting personally identifiable information about its customers, does it have a corresponding duty to use such data to alert its customers that products they've bought have been recalled for health or safety reasons? And if so, could turning over private data to companies actually create benefits, as well as privacy risks, for the consumer?

In the suit, consumer Jill Crowson is suing her grocery store -- Quality Food Center (QFC), a subsidiary of Kroger -- for negligent infliction of emotional distress and disregard of a "duty to warn" under the Washington Product Liability Act. Crowson alleges in her complaint that QFC failed to alert her family that ground beef it had sold them had been recalled in December's mad-cow scare.

Yet, Crowson says, QFC easily could have done so through information it maintained connected with her Advantage card - a "loyalty card" that meant QFC had Crowson's name, address and purchasing information. According to her complaint, QFC tracks every purchase made by consumers presenting the Advantage Card, including product description, date of purchase, store of purchase and the price, and saves that data alongside customer contact information.

Now, Crowson says, her family members "feel like walking time bombs" knowing they may be infected with the human form of mad-cow disease which the complaint states may have an up-to-30-year incubation period. And they are not the only ones: Crowson is seeking class action status for herself and what she believes are "hundreds" of similarly-situated Washington customers at QFC's approximately 40 stores in the state.

Some lawyers think Crowson's suit is a stretch. Federal law does not impose on companies a specific duty to notify consumers when tainted meat is recalled under the direction of the U.S. Department of Agriculture (USDA), as was the case here. Also, Crowson and her family, and the class she seeks to represent, are suing based on fear (and possible future harm), not current illness. Moreover, the chance they will actually get Mad Cow Disease some time in the future are apparently remote.

Nevertheless, the lawsuit has strong intuitive appeal: QFC could have saved the Crowsons and others like them a lot of worry, and perhaps sleepless nights, with what appears would have been minimal effort, using information at its digital fingertips. And the court has already once refused to dismiss it - finding that there were sufficient factual questions about the beef and about QFC's responsibility to the Crowsons, to merit further exploration of the evidence, through discovery and in the courtroom.

Regardless of the outcome of Crowson's suit, it underscores the need for retailers and policymakers to examine what sort of responsibilities come with private data gathering under loyalty card schemes.

The Lawsuit: The Chronology of Facts Alleged, and the Loyalty Card at Issue

On December 22 and 23, 2003, Crowson bought ground beef from a QFC store. Also on December 23, 2003, the USDA recalled Washington beef after it confirmed that a cow slaughtered in Washington had been infected with Mad Cow Disease. But Crowson says QFC did not pull the affected meat from its shelves until December 24, and did not post signs in its stores announcing the recall until December 27. By then, the Crowson family had eaten the meat.

Crowson states that she only learned of the recall by reading an article in her local newspaper. She said she subsequently called the supermarket chain, then faxed QFC a letter asking that her purchase be traced through her QFC Advantage card. On January 10, she was notified that her ground beef purchase was indeed from the recalled batch.

Crowson says that what QFC allegedly did in response to the recall - pulling the beef from shelves the next day, and posting signs three days after that -- was far from enough. She says it should have immediately warned customers who had bought possibly tainted meat through newspaper, radio and television advertising -- and by contacting individually those who, like her, had Advantage cards. Its failure to do so, she says, is what makes the company liable to her and other shoppers.

The Advantage Card is known in the retail industry as a customer "loyalty card" - providing discounts on specific items, in exchange for consumer information that will aid in better tailoring the company's marketing efforts. Combining the data from one's loyalty card application with data from other commercial databases or public records (for examples, mortgage records, or court filings) can often allow a very specific profile of each consumer.

Some states limit the types of information that a grocery store can collect from you when you register for a loyalty card. For example, California state law prohibits a grocery store from requiring that you turn over your social security or your driver's license number.

Companies, of course, stress the potential savings that might result from use of a loyalty card. Consider, for instance, the sales pitch on the QFC website it reads: "If you don't have a QFC Advantage Card, you're missing out! The Advantage Card is a powerful new way to save on the groceries you buy every day. It gives you the best of all possible worlds: premium quality, superb service and lower prices. That's something no other grocery store can match. So make sure you take advantage of the big savings."

Privacy advocates complain that loyalty cards result in the improper use - and, often, sale to third parties - of customers' private information. QFC apparently doesn't sell customers' data to third parties, however. Its website promises that "QFC will not release your name to any list service or manufacturer, and that such information will be held in the strictest of confidence-even within our company."

Privacy advocates also warn, however, that even if third-party sales of data are not allowed, the data compiled can always be accessed with a subpoena or warrant and used against the customer in court proceedings. Meanwhile, consumer advocates claim that certain loyalty cards don't really offer the savings they promise. Nevertheless, numerous stores employ loyalty cards.

Turning the Privacy Debate on Its Head: With Great Information, Comes Great Responsibility?

The Crowson lawsuit turns the privacy debate on its head. Typically, privacy advocates ask retailers to safeguard the personal information they collect about their shoppers. In this case, in contrast, plaintiff is asking that QFC delve into its database to notify her about a meat recall.

QFC does this very thing if a consumer loses his or her keys with an Advantage Card attached to them - returning the keys free of charge. So Crowson's attorney, Steve Berman, asks: "If they can contact you over a lost set of car keys, why couldn't they contact you and tell you that the beef you purchased could kill you?"

According to some news reports, QFC was reluctant to call customers regarding the recall based on privacy concerns. But in this case, the concerns seem misplaced. No privacy law is violated when a consumer communicates with the customer herself regarding private information - indeed, every offer the customer receives is, in a sense, this kind of communication. When the customer is receiving personalized discounts based on her purchase history, why can't she receive personalized health and safety warnings based on that history, too?

Was There a Duty to Warn Here?

From the law's perspective, the question will be not whether QFC ideally should have warned the Crowsons - of course it should have. The question will be if it had a legal duty to do so. Such a duty would come from either the common law of torts, which allows claims where there is a duty to behave reasonably to prevent foreseeable harm to others. . Or it might come from the Washington product liability statute - which, as noted above, creates a "duty to warn" in certain situations.

And of course, if there is no current duty, the legislature may see fit to pass a statute creating such a duty. :It may seem more prudent, however, for retailers to voluntarily assume such a responsibility. When companies benefit from collecting customer information, shouldn't they also assume a duty to protect customers from known risks associated with that very information? Some risks, of course, may be a matter of opinion. But this one was not: The fact of the risk was acknowledged by the USDA recall of the meat. With this kind of clear notice of the risk, it seems that QFC either does - or ought to - have a duty to protect customers from this risk.

Of course, should a retailer not wish to take on this responsibility, it can also change its loyalty program. QFC and other retailers could still track consumer purchases without asking them for personally identifiable information.


Anita Ramasastry is an Associate Professor of Law at the University of Washington School of Law in Seattle and a Director of the Shidler Center for Law, Commerce & Technology.

Family Sues Grocer over BSE Recalled Beef

A family who claims they ate beef linked to the nation’s only known case of mad cow disease recently filed a class action lawsuit against Quality Food Centers (QFC), claiming the grocery store chain negligently exposed them and others to “highly hazardous” meat and did not properly notify them that they had bought it. Attorneys for Jill Crowson filed the lawsuit in King County Superior Court on behalf of her family and possibly hundreds of other customers who unwittingly bought and consumed beef potentially exposed to mad cow disease. The lawsuit is believed to be the first stemming from this country’s only confirmed case of bovine spongiform encephalopathy (BSE), which was detected in a slaughtered dairy cow on December 23. Neither officials at Quality Food Centers’ Bellevue headquarters, or Kroger’s, the company’s Ohio-based corporate parent, could be reached for comment about the lawsuit. The suit contends the family bought and later ate ground beef from their local QFC that was part of a batch processed at Vern’s Moses Lake Meats on December 9 and included meat from the diseased cow. The beef was later shipped to wholesalers and retailers in Washington, Oregon, California, Idaho, Montana and Nevada. On December 23, after government scientists confirmed the infection, businesses began pulling potentially affected beef from their shelves under a voluntary recall. The family’s suit claims that, although QFC was aware of the recall, the store did not begin pulling the recalled beef from about 40 of its stores that carried it until December 24. The suit also claims that the company did not try to warn customers about the recalled beef until days later, and only then with small, inconspicuous signs inside the stores. Steve Berman, the family’s attorney, said the company had “a duty to warn” consumers who bought the beef under terms of the Washington Product Liability Act. Lawyers for the family say they believe hundreds, if not thousands, of QFC customers, and those of other stores, likely ate recalled beef - the reason why Berman filed their legal claim as a class action. A U.S. Department of Agriculture official last week said up to 17,000 pounds of meat affected by the recall likely was eaten or thrown out by customers. USDA officials have repeatedly said the risk from eating muscle cuts from an infected cow - the likely cut of meat processed and sold for hamburger in the recall - is extremely low. The family seeks damages for emotional distress and medical monitoring costs.

see also ;





Thirty-nine cohort animals1 and one offspring animal (born January 2004) were identified and effectively restricted within 24 hours of suspicion of the index case. The cohort and offspring animals were slaughtered following confirmation of the index case. Thirty-four cohorts were slaughtered in an OTMS abattoir on 12 May 2005. The offspring animal and five of the cohorts were slaughtered on farm. All the cohort animals were tested for BSE. Two of the animals slaughtered in the OTMS abattoir tested positive on BioRad ELISA. These homebred pedigree Holstein Friesian cows were born on 28 September 2001 and 1 May 2002, and were aged 43 and 36 months respectively at slaughter. These cases were confirmed on 27 May 2005 following positive Hybrid Western Blot (2001), OIE Western Blot (both), Immunohistochemistry (both) and Histopathology (2002) results. Where possible, samples from the BioRad negative cohorts were also subjected to further testing, all with negative results.



39. Professor John Wilesmith (Defra) updated the committee on the BSE cases born after the 1996 reinforced mammalian meat and bone meal ban in the UK (BARB cases). Around 116 BARB cases had been identified in Great Britain up to 22 November 2005, mostly through active surveillance. BARB cases had decreased in successive birth cohorts, from 44 in the 1996/1997 cohort to none to date in the 2000/2001 cohort. However, 3 BARB cases had been identified in the 2001/2002 cohort. Backcalculation of the prevalence of BARB cases indicated a drop from 130 infected animals per million (95% confidence interval 90-190) in the 1996/1997 cohort to 30 infected animals per million (95% confidence interval 10-60) in the 1999/2000 cohort. A shift in the geographical distribution of BSE cases, from the concentration of pre-1996 BSE cases in Eastern England to a more uniform


© SEAC 2005

distribution of BARB cases, had occurred. However, it appeared that certain post-1996 cohorts had a higher exposure to BSE in certain areas for limited periods. Several clusters of BARB cases within herds had been identified (5 pairs, 2 triplets and 1 quadruplet).

40. A triplet of BARB cases in South West Wales had been investigated in detail. The triplet comprised 2 cases born in September and October 2001 and a third in May 2002. The animals born in 2001 were reared outdoors from the spring of 2002 but the animal born in 2002 had been reared indoors. Further investigation of feeding practices revealed that a new feed bin for the adult dairy herd had been installed in September 1998. In July 2002 the feed bin was emptied, but not cleaned, and relocated. All 3 BARB cases received feed from the relocated bin. This finding suggested the hypothesis that the feed bin installed in September 1998 was filled initially with contaminated feed, that remnants of this feed fell to the bottom of the bin during its relocation, and thus young animals in the 2001/2002 birth cohort were exposed to feedstuffs produced in 1998. No adult cattle had been infected because of the reduced susceptibility to BSE with increasing age.

41. Further investigation of multiple case herds had found no association of BARB clusters with the closure of feed mills.

42. Professor Wilesmith concluded that there is evidence of a decline in risk of infection for successive birth cohorts of cattle. The BARB epidemic is unlikely to be sustained by animals born after 31 July 2000. Feed bins could represent a continued source of occasional infection and advice to farmers is being formulated to reduce this risk. There is no evidence for an indigenous source of infection for the BARB cases.

43. Members considered it encouraging that no other factor, apart from feed contamination, had been identified as a possible cause of BARB cases to date. Members commented that this study suggests that only a small amount of contaminated feed may be required for infection and that BSE infectivity can survive in the environment for several years. Professor Wilesmith agreed and noted that infection caused by small doses of infectious material was consistent with other studies, and it would appear there is little dilution of infectivity, if present, in the rendering system.

Additionally it appeared that the infectious agent had survived for 4 years in the feed bin.

44. The Chair thanked Professor Wilesmith for his presentation.



let's take a closer look at this new prionpathy or prionopathy, and then let's look at the g-h-BSEalabama mad cow.

This new prionopathy in humans? the genetic makeup is IDENTICAL to the g-h-BSEalabama mad cow, the only _documented_ mad cow in the world to date like this, ......wait, it get's better. this new prionpathy is killing young and old humans, with LONG DURATION from onset of symptoms to death, and the symptoms are very similar to nvCJD victims, OH, and the plaques are very similar in some cases too, bbbut, it's not related to the g-h-BSEalabama cow, WAIT NOW, it gets even better, the new human prionpathy that they claim is a genetic TSE, has no relation to any gene mutation in that family. daaa, ya think it could be related to that mad cow with the same genetic make-up ??? there were literally tons and tons of banned mad cow protein in Alabama in commerce, and none of it transmitted to cows, and the cows to humans there from ??? r i g h t $$$

Rural and Regional Affairs and Transport References Committee The possible impacts and consequences for public health, trade and agriculture of the Government’s decision to relax import restrictions on beef Final report June 2010

2.65 At its hearing on 14 May 2010, the committee heard evidence from Dr Alan Fahey who has recently submitted a thesis on the clinical neuropsychiatric, epidemiological and diagnostic features of Creutzfeldt-Jakob disease.48 Dr Fahey told the committee of his concerns regarding the lengthy incubation period for transmissible spongiform encephalopathies, the inadequacy of current tests and the limited nature of our current understanding of this group of diseases.49

2.66 Dr Fahey also told the committee that in the last two years a link has been established between forms of atypical CJD and atypical BSE. Dr Fahey said that: They now believe that those atypical BSEs overseas are in fact causing sporadic Creutzfeldt-Jakob disease. They were not sure if it was due to mad sheep disease or a different form. If you look in the textbooks it looks like this is just arising by itself. But in my research I have a summary of a document which states that there has never been any proof that sporadic Creutzfeldt-Jakob disease has arisen de novo—has arisen of itself. There is no proof of that. The recent research is that in fact it is due to atypical forms of mad cow disease which have been found across Europe, have been found in America and have been found in Asia. These atypical forms of mad cow disease typically have even longer incubation periods than the classical mad cow disease.50


In this study, we identified a novel mutation in the bovine prion protein gene (Prnp), called E211K, of a confirmed BSE positive cow from Alabama, United States of America. This mutation is identical to the E200K pathogenic mutation found in humans with a genetic form of CJD. This finding represents the first report of a confirmed case of BSE with a potential pathogenic mutation within the bovine Prnp gene. We hypothesize that the bovine Prnp E211K mutation most likely has caused BSE in "the approximately 10-year-old cow" carrying the E221K mutation.

Saturday, August 14, 2010

BSE Case Associated with Prion Protein Gene Mutation (g-h-BSEalabama) and VPSPr PRIONPATHY

(see mad cow feed in COMMERCE IN ALABAMA...TSS)

Wednesday, July 28, 2010

re-Freedom of Information Act Project Number 3625-32000-086-05, Study of Atypical BSE UPDATE July 28, 2010

Tuesday, August 03, 2010

Variably protease-sensitive prionopathy: A new sporadic disease of the prion protein

Monday, August 9, 2010

Variably protease-sensitive prionopathy: A new sporadic disease of the prion protein or just more PRIONBALONEY ?

Thursday, August 12, 2010

Seven main threats for the future linked to prions

Tuesday, March 16, 2010



Proof Committee Hansard

RRA&T 2 Senate Friday, 5 February 2010


[9.03 am]

BELLINGER, Mr Brad, Chairman, Australian Beef Association

CARTER, Mr John Edward, Director, Australian Beef Association

CHAIR—Welcome. Would you like to make an opening statement?

Mr Bellinger—Thank you. The ABA stands by its submission, which we made on 14 December last year, that the decision made by the government to allow the importation of beef from BSE affected countries is politically based, not science based. During this hearing we will bring forward compelling new evidence to back up this statement. When I returned to my property after the December hearing I received a note from an American citizen. I will read a small excerpt from the mail he sent me in order to reinforce the dangers of allowing the importation of beef from BSE affected countries. I have done a number of press releases on this topic, and this fellow has obviously picked my details up from the internet. His name is Terry Singeltary and he is from Bacliff, Texas. He states, and rightfully so:

You should be worried. Please let me explain. I’ve kept up with the mad cow saga for 12 years today, on December 14th 1997, some four months post voluntary and partial mad cow feed ban in the USA, I lost my mother to the Heidenhain variant Creutzfeldt-Jakob disease (CJD). I know this is just another phenotype of the infamous sporadic CJDs. Here in the USA, when USA sheep scrapie was transmitted to USA bovine, the agent was not UK BSE—it was a different strain. So why then would human TSE from USA cattle look like UK CJD from UK BSE? It would not. So this accentuates that the science is inconclusive still on this devastating disease. He goes on to state:

The OIE— the International Organisation of Epizootics, the arm of the WTO— is a failed global agent that in my opinion is bought off via bogus regulations for global trade and industry reps. I have done this all these years for nothing but the truth. I am a consumer, I eat meat, but I do not have to sit idly by and see the ignorance and greed of it all while countless numbers of humans and animals are being exposed to the TSE agents. All the USA is interested in is trade, nothing else matters.

Even Dr Stanley Prusiner, who incidentally won the Nobel Health Prize in 1997 for his work on the prion—he invented the word ‘prion’, or it came from him—states:

The BSC policy was set up for one purpose only, trade—the illegal trading of all strains of TSE globally throughout North America, which is home to CBSC, IBSC and HBSC, many scrapie strains and two strains of CJD to date. (please note typo error, those should have read cBSE, lBSE, and hBSE...tss)

I would also like, while I have the opportunity, to explain the beef-off-the-shelves myth. At the first Senate hearing on 14 December, it was explained that the reason why they allowed BSC beef into Australia was the beef-off-the-shelves policy, whereby if we found a case of BSC in Australia they would have to recall all—

Friday, 5 February 2010 Senate RRA&T 3


Senator HEFFERNAN—Which of course is total BS.

Mr Bellinger—Correct. This is written in the FSANZ document—Food Standards Australia New Zealand. Why isn’t this same policy in New Zealand? It is not—it is only in Australia. We are the only country in the world to have this idiotic policy. So we again call for the tabling of the WTO obligations paperwork. We do not believe that exists.

snip...see full text 110 pages ;

for those interested, please see much more here ;

Tuesday, July 13, 2010


AUSTRALIAN QUESTIONNAIRE TO ASSESS BSE RISK (OIE) Terrestrial Animal Health Code, 2009 and USA export risk factor for BSE to Australia

Saturday, August 14, 2010


US denies it's illegally sending beef to Australia ?

Friday, 13/08/2010

Saturday, June 19, 2010


Sunday, August 15, 2010


Tuesday, July 27, 2010

Spontaneous generation of mammalian prions


Molecular characterization of BSE in Canada

Jianmin Yang1, Sandor Dudas2, Catherine Graham2, Markus Czub3, Tim McAllister1, Stefanie Czub1 1Agriculture and Agri-Food Canada Research Centre, Canada; 2National and OIE BSE Reference Laboratory, Canada; 3University of Calgary, Canada

Background: Three BSE types (classical and two atypical) have been identified on the basis of molecular characteristics of the misfolded protein associated with the disease. To date, each of these three types have been detected in Canadian cattle.

Objectives: This study was conducted to further characterize the 16 Canadian BSE cases based on the biochemical properties of there associated PrPres. Methods: Immuno-reactivity, molecular weight, glycoform profiles and relative proteinase K sensitivity of the PrPres from each of the 16 confirmed Canadian BSE cases was determined using modified Western blot analysis.

Results: Fourteen of the 16 Canadian BSE cases were C type, 1 was H type and 1 was L type. The Canadian H and L-type BSE cases exhibited size shifts and changes in glycosylation similar to other atypical BSE cases. PK digestion under mild and stringent conditions revealed a reduced protease resistance of the atypical cases compared to the C-type cases. N terminal- specific antibodies bound to PrPres from H type but not from C or L type. The C-terminal-specific antibodies resulted in a shift in the glycoform profile and detected a fourth band in the Canadian H-type BSE.

Discussion: The C, L and H type BSE cases in Canada exhibit molecular characteristics similar to those described for classical and atypical BSE cases from Europe and Japan. This supports the theory that the importation of BSE contaminated feedstuff is the source of C-type BSE in Canada. It also suggests a similar cause or source for atypical BSE in these countries.

Wednesday, August 11, 2010


Thursday, August 19, 2010


Thursday, August 19, 2010

SCRAPIE CANADA UPDATE Current as of 2010-07-31 The following table lists sheep flocks and/or goat herds confirmed to be infected with scrapie in Canada in 2010.

Current as of: 2010-07-31

14th ICID International Scientific Exchange Brochure -

Final Abstract Number: ISE.114

Session: International Scientific Exchange

Transmissible Spongiform encephalopathy (TSE) animal and human TSE in North America

update October 2009

T. Singeltary

Bacliff, TX, USA


An update on atypical BSE and other TSE in North America. Please remember, the typical U.K. c-BSE, the atypical l-BSE (BASE), and h-BSE have all been documented in North America, along with the typical scrapie's, and atypical Nor-98 Scrapie, and to date, 2 different strains of CWD, and also TME. All these TSE in different species have been rendered and fed to food producing animals for humans and animals in North America (TSE in cats and dogs ?), and that the trading of these TSEs via animals and products via the USA and Canada has been immense over the years, decades.


12 years independent research of available data


I propose that the current diagnostic criteria for human TSEs only enhances and helps the spreading of human TSE from the continued belief of the UKBSEnvCJD only theory in 2009. With all the science to date refuting it, to continue to validate this old myth, will only spread this TSE agent through a multitude of potential routes and sources i.e. consumption, medical i.e., surgical, blood, dental, endoscopy, optical, nutritional supplements, cosmetics etc.


I would like to submit a review of past CJD surveillance in the USA, and the urgent need to make all human TSE in the USA a reportable disease, in every state, of every age group, and to make this mandatory immediately without further delay. The ramifications of not doing so will only allow this agent to spread further in the medical, dental, surgical arena's. Restricting the reporting of CJD and or any human TSE is NOT scientific. Iatrogenic CJD knows NO age group, TSE knows no boundaries. I propose as with Aguzzi, Asante, Collinge, Caughey, Deslys, Dormont, Gibbs, Gajdusek, Ironside, Manuelidis, Marsh, et al and many more, that the world of TSE Transmissible Spongiform Encephalopathy is far from an exact science, but there is enough proven science to date that this myth should be put to rest once and for all, and that we move forward with a new classification for human and animal TSE that would properly identify the infected species, the source species, and then the route.

Wednesday, March 31, 2010

Atypical BSE in Cattle


Wednesday, August 18, 2010

Incidence of CJD Deaths Reported by CJD-SS in Canada as of July 31, 2010

Monday, August 9, 2010

National Prion Disease Pathology Surveillance Center Cases Examined (July 31, 2010)

(please watch and listen to the video and the scientist speaking about atypical BSE and sporadic CJD and listen to Professor Aguzzi)

Thursday, August 12, 2010

USA Blood products, collected from a donor who was at risk for vCJD, were distributed July-August 2010

Friday, August 20, 2010

Heidenhain Variant of Sporadic Creutzfeldt-Jakob Disease With the Co-Occurrence of Two Different Types of Prion Protein

Terry S. Singeltary Sr. P.O. Box 42 Bacliff, Texas USA 77518

No comments:

Post a Comment